Translesion synthesis by yeast DNA polymerase from templates containing lesions of ultraviolet radiation and acetylaminofluorene
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, DNA polymerase zeta (Polzeta) is required in a major lesion bypass pathway. To help understand the role of Polzeta in lesion bypass, we have performed in vitro biochemical analyses of this polymerase in response to several DNA lesions. Purified yeast Polzeta performed limited translesion synthesis opposite a template TT (6-4) photoproduct, incorporating A or T with similar efficiencies (and less frequently G) opposite the 3' T, and predominantly A opposite the 5' T. Purified yeast Polzeta predominantly incorporated a G opposite an acetylaminofluorene (AAF)-adducted guanine. The lesion, however, significantly inhibited subsequent extension. Furthermore, yeast Polzeta catalyzed extension DNA synthesis from primers annealed opposite the AAF-guanine and the 3' T of the TT (6-4) photoproduct with varying efficiencies. Extension synthesis was more efficient when A or C was opposite the AAF-guanine, and when G was opposite the 3' T of the TT (6-4) photoproduct. In contrast, the 3' T of a cis-syn TT dimer completely blocked purified yeast Polzeta, whereas the 5' T was readily bypassed. These results support the following dual-function model of Polzeta. First, Polzeta catalyzes nucleotide incorporation opposite AAF-guanine and TT (6-4) photoproduct with a limited efficiency. Secondly, more efficient bypass of these lesions may require nucleotide incorporation by other DNA polymerases followed by extension DNA synthesis by Polzeta.
منابع مشابه
Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase zeta (Polzeta) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is no...
متن کاملChronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells
UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). Th...
متن کاملRoles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight.
Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase eta (Poleta) and polymerase zeta (Polzeta), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of ...
متن کاملTranslesion DNA Synthesis by Human DNA Polymerase η on Templates Containing a Pyrimidopurinone Deoxyguanosine Adduct, 3-(2′-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one†
M(1)dG (3-(2'-deoxy-beta-d-erythro-pentofuranosyl)pyrimido[1,2-a]purin-10(3H)-one) lesions are mutagenic in bacterial and mammalian cells, leading to base substitutions (mostly M(1)dG to dT and M(1)dG to dA) and frameshift mutations. M(1)dG is produced endogenously through the reaction of peroxidation products, base propenal or malondialdehyde, with deoxyguanosine residues in DNA. The mutagenic...
متن کاملFF483–484 motif of human Polη mediates its interaction with the POLD2 subunit of Polδ and contributes to DNA damage tolerance
Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet ir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 13 شماره
صفحات -
تاریخ انتشار 2001